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Section 1

Introduction

NASA Grant #NAGW-21 was awarded to the MIT Space Systems Laboratory (SSL)

beginning in November 1979 to support research in human productivity in space, as well

as in space telerobotics and automation. The grant also supported research in the control

of large flexible space structures, but this segment of the effort was since transferred to

Grant #NAGW-2014. This final report is intended to review the research conducted in

productivity and robotics, and to provide a guide to the literature resulting from this
research.

The SSL first set out to study human productivity for extravehicular tasks performed

in microgravity, particularly including in-space assembly of truss structures and other

large objects. This research peaked with the 1985 EASE-ACCESS flight of the Space

"shuttle, which saw the repeated assembly and disassembly in the Shuttle cargo bay of

the MIT EASE structure, a tetrahedral assembly of truss beams connected to structural

nodes with quick-connect joints. This flight experiment demonstrated the feasibility

of human assembly of truss structures, and successfully tested several arrangements for

astronaut support during Extra Vehicular Activity (EVA) including mobile astronaut foot

restraints using the Remote Manipulator System (RMS) and free-moving, unsupported

assembly.

During the same period, the SSL's human-factors research probed the anthropometric

constraints imposed on microgravity task performance and the associated workstation de-
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sign requirements. Anthropometric experiments included reach-envelope tests conducted

using the Three-Dimensional Acoustic Positioning System (3DAPS), which permitted

measuring the range of reach possible for persons using foot restraints in neutral buoy-

ancy, both with and without space suits. These experiments revealed the very wide range

of body motion that is possible in microgravlty. In addition, a one-degree-of-freedom

force-sensing hand-controller system and a multl-degree-of-freedom force-sensing system

(FAFNIR), both designed for neutral-buoyancy research, permitted study of subjects'

ability to apply and control forces exerted in neutral buoyancy with a variety of body-



constraint arrangements.

Many of the SSL's early human-productivity research was conducted in neutral buoy-

ancy, using the support of water to simulate the weightless environment of space. The

SSL developed many systems and techniques for neutral-buoyancy testing, regularly test-

ing at both the MIT Alumni Pool (the campus swimming pool) and the NASA Neutral

•Buoyancy Simulator at the Marshall Space Flight Center.

It became clear over time that the anticipated EVA requirement associated with

the Space Station and with in-space construction of interplanetary probes would heav-

ily burden astronauts, and remotely-operated robots (teleoperators) were increasingly

considered to absorb the workload. The SSL's experience in human EVA productivity

led naturally to teleoperation research into the remote performance of tasks through

human-controlled robots. This was an excellent target for neutral-buoyancy research,

which permits full three-dimensional vehicle mobility along with an excellent realization
of the interaction forces between telerobots and their environment. Three such robots

were built for this purpose, each one having a different purpose and design. These teler-

obots demonstrated a variety of teleoperation capabilities, including the possibility of

performing complex construction tasks through remote presence without the immediate

participation of human EVA crewmembers.

In the remainder of this report, each of these themes appears in detail, with reference

to the associated research theses and other literature generated by the SSL. In addition,

the continuing research activities of the Laboratory, that exceed the period of the subject

grant, are presented and discussed for the reader's reference.



Section 2

SSL Research in Human EVA and

Anthropometrics

The extravehicular, microgravity environment is a challenging place for humans to work.

In the late 1970's, the advent of plans for the Space Station convinced members of

the Space Systems Laboratory that improved understanding of microgravity task per-

formance, under the conditions likely to prevail during Space Station construction, was

necessary.

This conviction led, in the late 1970's and early 1980's, to a program of research at

the MIT SSL to study human body dynamics during a variety of microgravity tasks,

most particularly the assembly of large truss members into extended structures. Much

of this work was aimed at determining the validity of neutral-buoyancy simulation as

a technique for simulating microgravity, by conducting experimental assembly tasks in

neutral buoyancy and by reproducing in neutral buoyancy certain tasks that had been

performed and filmed in orbit. The following SSL reports relate to experimental activities

in human on-orbit performance in neutral buoyancy and in orbit. [1,2,13,14,15,16,17,18,

19,20,21,23,28,30,31,32,38,43,51,52,55,58,74,75,85,95]

This research strongly supported the effectiveness of neutral buoyancy for testing

and practicing extravehicular microgravity assembly procedures. The research was then

continued using neutral buoyancy simulation as a tool to examine the productivity of as-

tronauts in realistic simulations of anticipated microgravity assembly tasks. This period

of research was accompanied by the development by the Laboratory of truss assem-

bly connectors and other devices to aid human-factors research and to suggest designs

for use in orbit. [3,4,5,6,7,8,9,10,11,12,22,24,25,26,27,29,39,40,41,44,64,67,76,77,79,94] In

addition to a prototype truss connector, the neutral-buoyancy Personal Underwater Mo-

bility Apparatus (PUMA) was built to simulate the Manned Maneuvering Unit used in

space, again to reproduce the conditions of in-space task performance. A new space suit

glove developed by the Laboratory was intended to give astronauts improved dexterity

3



in space. [33,34,59]And a seriesof spaceoperations studies investigated microgravity
task planning and analysis. [61,63s72]

This array of neutral-buoyancyresearch,and observationof actual microgravity per-
formanceby SpaceShuttle astronauts,indicated that astronautscould indeedfunction in
spaceat a high level of productivity. In order to fully establish this result, and to obtain
an even more rigorous confirmation of the neutral-buoyancy results, the EASE experi-
ment wasproposedand carriedout in 1985to directly test and compareneutral-buoyancy
and microgravity performanceof a truss assembly.[45,48,53,54]

The EASE structure wascomposedof six cylindrical truss elementsto be connected
to one another by four apical elementsinto a tetrahedral shapesuggestingthe methane
molecule. One apex wasanchoredin the SpaceShuttle cargobay, permitting the struc-
ture to be securedand repositionedduring assembly. The structure combinedvarious
characteristicsof a microgravity truss including a fully kinetically determinate "closed-

box" construction. The apex connectors were of a design permitting straightforward

operation by an astronaut wearing a space suit glove.

The results of the EASE experiment confirmed the optimistic predictions for EVA

productivity, as the structure was assembled and disassembled several times on orbit in

the allotted EVA time. The experiment included testing a variety of working arrange-

ments for the astronauts, including the use of foot restraints at the tip of the Space

Shuttle remote manipulator arm and free-floating assembly. The EASE experiment also

permitted direct comparison of neutral-buoyancy and microgravity task performance, as

the same task was performed and recorded repeatedly in both environments.

More recent astronaut EVA research has focused on other aspects influencing as-

tronaut mlcrogravity capabilities and workstation design, with particular application to

on-orblt repair and servicing of satellites. Microgravity both helps and hinders in the

performance of tasks on orbit. Not needing to support his/her body against gravity, an

astronaut in foot restraints may assume a variety of body configurations that consider-

ably extend his/her reach envelope relative to the foot restraints. On the other hand, use

of foot restraints restricts astronaut mobility and when operating without foot restraints

it may be very difficult for an astronaut to exert substantial forces and torques on ob-

jects within reach. Handholds certainly help, but bracing points for feet are required for

exerting large forces or moments.

The SSL's anthropometrics research has therefore concentrated on finding the astro-

naut reach envelope both with and without the space suit (which substantially restricts

motion) and on measuring applied-force capabilities within the workspace. The pur-

pose of this work was to contribute to task design for astronauts in microgravity, and

to establish limits on what can reasonably be expected of astronauts within a particu-

lar worksite configuration. The SSL's teleoperation research led to some of the earliest

available results on astronaut EVA task performance. It also provided the SSL with the

understanding and experience that was needed to launch neutral-buoyancy study of tele-

4



operatorsand teleoperator performanceof the samekinds of tasksthat had beenstudied
for human EVA. This researchis the subject of the next section of this report.
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Section 3

SSL Teleoperation Research

While the SSL's experiences with astronaut on-orbit task performance were generally

encouraging, it became increasingly clear to NASA and to members of the Laboratory

during the 1980's that very heavy demands would be placed on human EVA by Space

Station activities. It therefore became important to understand how astronauts' efforts

could be augmented through robotics and automation and by remotely-controlled robotic

task performance.

The field of telerobotics concerns itself with robots, or mechanical manipulating and

maneuvering devices, that are remotely controlled in "real time" by human beings..This

means that a human operator directly controls the robots' maneuvering and manipulation

devices to perform the necessary task, generally viewing the remote worksite through a

visual interface system. The remote robot therefore takes on the hostile or _naccessible

environment where the task must be performed, while the human operator provides the

intellectual, sensory, and control functions from a safe control site. In the case of space

EVA teleoperation, the worksite is rendered both uncomfortable and unsafe by the space

suit, collision hazards, and microgravity, and by the lengthy procedures attending each
EVA exit and return.

Because of its considerable study and experimentation with human performance of

orbital EVA tasks, and its experience with the practicalities of neutral-buoyancy simula-

tion, the Space Systems Laboratory was well situated to take on the study of microgravity

teleoperation. [56,62,71,73,79,81,82,84,86,89] Neutral-buoyancy simulation of space teler-

obots uses underwater vehicles ballasted and trimmed to be neutrally buoyant in both

depth and orientation, moving freely in the three-dimensional aquatic environment just

as the space telerobot moves freely in space.

The first operational teleoperator vehicle in the Laboratory was MPOD, the Multi-

mode Proximity Operations Device. [93] MPOD's primary function was to study docking

maneuvers that permit one vehicle to be maneuvered and attached to another. This im-

portant function severely tests the ability to control the maneuvered vehicle, particularly
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during impact as the docking fixtures (male and female) of the two vehiclescontact one
another. MPOD is equippedwith a forward-pointing docking fixture projecting approxi-
mately 1/2 meter in front of the vehiclethat mateswith afixed dockingtarget simulating
the secondvehicle.

Prior to the MPOD research,vehicle docking had generally been consideredonly
wherea human operator is presenton the dockingvehicleto directly observeand control
the maneuver. It was therefore important to determine the relative efficacy Of teleoper-

ated docking, where the operator's view would be not direct but via a television camera

mounted on the vehicle (or nearby) and providing the operator with a remote sense of

vision. In order to permit comparison of "direct" control and teleoperation, MPOD was

designed to be operated in a variety of direct-control and teleoperation modes-hence

the "multimode" character of the vehicle. First, of course, MPOD was designed to

be remotely operated from an above-water control station that included a video mon-

itor projecting the view from a forward-pointing vehicle-mounted camera. Second, the

vehicle-centered view could be replaced with a "third-person" camera viewing both vehi-

cle and docking target, to simulate vehicle docking with this alternative visual feedback.

Third, an underwater control station permitted controlling the vehicle using a direct,

third-person view. Fourth, MPOD's body itself was built to accommodate a SCUBA

diver to perform "direct" vehicle control using underwater controls, with either a di-

rect view through the transparent front window of the vehicle or using an underwater

television monitor to present the same views as the above-water control station. The

importance of kinesthetic and vestibular motion cues (direct motion sensing) and of view

.angles could therefore be directly determined by comparing experiments with precisely

controlled operator-vehicle relationships.

A variety of camera and control-station arrangements permitted further variation of

the operator-vehicle relationship. A fixed-location, underwater control station permitted

vehicle docking experiments using a direct, exterior view of the vehicle, while a fixed,

remote camera permitted a parallel experiment to be conducted using the above-water
control station.

MPOD's capabilities for vehicle-maneuvering experiments were impressive, but the

vehicle was limited to tasks requiring no remote manipulation or assembly. The Beam

Assembly Teleoperator (BAT) was built in order to directly compare teleoperator and

human capabilities in tasks requiring transport and assembly of structural elements into

truss structures, with application to the construction of large space structures such as

the Space Station. [35,36,37,42,46,47,50,57,60,65,70,97] The purpose was to continue the

Laboratory's research in on-orbit assembly, moving into teleoperator performance of the

same tasks that had previously been studied with human astronauts directly performing
these tasks.

BAT incorporated a variety of design advantages over MPOD. First, of course, the

robot was provided with a variety of manipulators and claws that permitted carrying
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and connectingtruss elements.A five-degree-of-freedomprimary manipulator, controlled
from a kinematically identical master arm mounted on the vehicle control station, per-
formed the dextrous manipulation necessaryto position and connect truss elements.
Sinceeachtruss-elementconnectionrequires two items to be connected, a second arm

was necessary: this was realized with a fixed claw that could grip a truss beam or node to

fix the vehicle in place. A third, one-degree-of-freedom beam-carrier manipulator served

for transporting and roughly positioning truss beams. In the "streamlined" orientation,

the beam carrier arm holds the beam parallel to the vehicle's primary direction of travel,

interfering as little as possible with BAT's motion. In order to position the beam for

assembly, the beam-carrier is pneumatically actuated to swing the beam into position at

the front of the vehicle adjacent to the claw and the dextrous manipulator.

BAT also incorporated greater capabilities for remote vision than did MPOD. Rather

than using a single, fixed camera, BAT's stereoscopic camera pair can be panned and

tilted to track the operator's head motion at the control station. The vision system thus

permits the operator to "look around" in the vehicle environment through a helmet-

mounted display and to enjoy a very striking sense of visual depth. This strongly enhances

the operator's ability to perceive objects and targets in the remote environment, and to

perceive and track BAT's motion there. BAT's second, fixed camera pair was normally

used for navigation, where a strong sense of the vehicle's orientation and motion was

important.

BAT has been used to reproduce many of the tasks that have been performed by

human astronauts, including assembling a tetrahedral structure resembling the EASE

structure, and a space station truss structure, in 1987. It has since been used to attempt a

greater variety of servicing tasks in neutral buoyancy, particularly including the exchange

of batteries for the Hubble space telescope.

Both BAT and MPOD are rather large vehicles, heavy and difficult to service and

deploy conveniently. In an attempt to simplify vehicle operations and to achieve greater

vehicle maneuverability, and to update the overall vehicle design, the ASTRO vehicle

(Apparatus for Space TeleRobotic Operations) was developed. [91,92] Using a more com-

pact design and updated electronic systems, ASTRO was intended to become a modular

vehicle permitting incorporation of a variety of manipulator systems with a compact, ser-

viceable maneuvering system. ASTRO has indeed proven itself as a serviceable motion

bed, with potential usefulness as a "sheepdog" vehicle permitting remote observation of

tasks involving other vehicles and astronauts.

Recent research using these vehicles has concentrated on achieving closed-loop control

of their position and orientation based on a variety of sensors, in order to augment the

operator's control as well as to improve simulation of microgravity vehicle dynamics.

[68,69,70,78,80,87,88,90,92,96] In addition to pendular gages for sensing the local vertical,

and angular rate sensors for sensing the vehicles' rotation, the 3DAPS (3-Dimensional

Attitude and Position Sensing) system has been used with MPOD to estimate and control
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the vehicle's position and orientation in the water. 3DAPS is a hydroacoustic system

based on measuring the transmission delay for sound pulses travelling from a set of

"thumpers" to as set of vehicle-mounted thumpers. Unfortunately the noise and error

properties of the 3DAPS system as well as its infrequent position updates have made

such control very difficult. Substantial benefit has accrued, however, from the use of rate

gyroscopes for vehicle rotation stabilization, and such methods hold promise for vehicle
stabilization.

In addition, the 3DAPS system has been used to provide the controlling operator with
visual cues, displayed on the remote-vision monitor, to represent MPOD's position and

orientation relative to the docking target. [89] This information was intended to reinforce

the direct visual cues to be had by looking directly at the remote image itself. While

the problems with the 3DAPS system that are mentioned above prevented substantive

results from being draw from the effort, it resulted in observations that have led to further

research in augmented vision systems.

9



Section 4

Other SSL Research Efforts

In addition to the human-performance and teleoperation research above, the Laboratory

has performed research under the subject Grant into novel alternative vehicle designs as
well virtual-environment simulation of remote-vehicle control.

Perhaps the Laboratory's most unusual vehicle is a pneumatically-actuated walking

robot intended to move along a truss beam in a "claw-over-claw" fashion. The simplicity

of the walking motion permits a preprogrammed gait whereby each arm of the vehicle

alternately swings up from the supporting bar, slides linearly to the front of the vehicle

while the opposite claw slides to the rear, and then re-grasps the bar.

The Laboratory also developed a virtual-environment vehicle simulator simulating a

remote vehicle maneuvering relative to a spinning spacecraft in low Earth orbit (including

a rough depiction of Earth itself). The simulation was able to be observed and controlled

from the same control station normally used to control MPOD itself.

As significant as the vehicles themselves, perhaps, has been the development of their

associated control station. RECS, the Reconfigurable Electronic Control Station, is used

with MPOD to provide the large monitor and control-input devices that constitute the

human interface to th$ vehicle. In addition, it provides a number of monitors and key-

boards for communicating with the computers involved in the vehicle's control. ICS, the

Integrated Control Station, includes the helmet-mounted display and head-orientation

tracking system that make up a part of the BAT visual interface system. The teleop-

erator master arm mounted on ICS also provides the important teleoperator llnk to the
dextrous arm attached to that telerobot.

While it never became fully operational, the SSL teleoperation-simulation motion

bed (the SIM room) represented an alternative to both neutral-buoyancy and v.irtual-

environment simulation for teleoperation research. The five-degree-of-freedom motion

platform was intended to be fitted with video cameras in order to simulate a maneuvering

remote vehicle. The sixth, vertical degree of vehicle freedom was intended to be simulated

by raising and lowering the space shuttle model relative to which the simulated vehicle
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was maneuvered. A high level of visual realism and a faithful reproduction of microgravity

vehicle dynamics could be obtained by controlling the camera motion platform to respond

to operator control inputs as would a simulated telerobot.

Drive-system design problems prevented the simulator room's ever becoming opera-

tional, but it has been modified and updated since the termination of the subject Grant

to support development of machine vision systems for automatic sensing and control of

remote-vehicle motion. This and other continuing research efforts are discussed in the

following section.
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Section 5

Future Directions: The Laboratory

for Space Teleoperation and
Robotics

Although NASA support for the Space Systems Laboratory has ended for now with the

subject Grant, the lab is continuing its research in space teleoperation and robotics as the

newly-named Laboratory for Space Teleoperation and Robotics (LSTAR). The following

information about this new Laboratory's research is provided for readers interested in
i.

continuing research at MIT in space teleoperation systems.

The goal of this new Laboratory is to apply advanced systems design and systematic,

effective human-factors research in order to develop and study advanced hum£n-machine

interface systems for teleoperation. Despite its name, the Laboratory is targeting the

common elements of teleoperator systems to be applied in the land, sea, and air en-

vironments as well as in space. The Laboratory will concentrate on those aspects of

teleoperator systems that strongly affect the success of teleoperation, most particularly

the sensory and control interface that link the human operator with the remote robot.

In addition, the Laboratory is working on autonomous robotic control to aid human tele-

robot operators. The current main thrusts of the Laboratory in this direction are focused

on a new, advanced, neutrally-buoyant telerobotic vehicle called STARFISH, and on a

virtual-environment system intended to test a broad variety of human-machine interface

systems.

LSTAR's virtual-environment system is based on an IRIS 4D/20 Personal Graphics

System that is shared by researchers in the Man-Vehicle Laboratory at MIT who are

studying flight-plan information presentation in the cockpit. For LSTAR's purposes, a

IBM-PC compatible computer connected to the IRIS converts operator control inputs into

digital form and transmits them over a serial communications link. The IRIS processor

calculates the responses of a simulated remote vehicle to the operator's inputs, and
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generatesoperator-feedbackimagesbasedon this simulated vehicle's motion and on a

graphical model of the vehicle's visual environment. These images may be presented

either on a large-screen television monitor, on a stereoscopic helmet-mounted display

worn by the operator.

This virtual-environment system permits testing a wide variety of operator-vehicle in-

terface systems, simply and economically. Vehicle dynamics, camera pointing control (for

simulated pan-and-tilt cameras), the visual environment, and control-device assignments

are all under direct,convenient software control. The ease of controlling the experimen-

tal conditions, and the predictability of the virtual environment, make human-subject

testing much more easy and effective then in neutral buoyancy, where vehicle dynamics

are relatively hard to control, and where the vicissitudes of controlling physical remote

vehicles may mask the relatively subtle effects being sought.

The point of this research is to lend to the remote-vehicle operator, as nearly as

possible, the same easy and effective perception in the remote environments as if he/she

were truly there. This is a challenging task, but it is crucially important in order to

obtain acceptance of remote vehicles in highly safety-conscious environments such as

the Space Station. An astronaut fitted with a Manned Maneuvering Unit (MMU) can

very easily perceive and control his/her motion relative to the Station, and so avoid

any hazardous loss of control. A primary difference between that astronaut, and an

operator controlling a remote robot from within the safety of the Station, is that the

remote-vehicle operator suffers from more restricted visual perception. If the remote-

vision interface may be improved to approximate direct perception--and if the operator's

.control may be augmented with automatic systems--suft]cient vehicle safety may be

obtained to gain acceptance of remote-vehicle Space Station operations. If any perception

of danger persists, however, conservatism and the general bias toward manned space

operations will prevent acceptance of free-flying telerobots for EVA operations.

LSTAR's neutral-buoyancy program is aimed at developing the automatic-control and

control-augmentation systems to help telerobot operators at their tasks. Point-to-point

navigation, worksite stationkeeping, docking, and object positioning and grasping are all

tasks that can be automatically programmed and controlled with modern sensing and

control technology, and the Laboratory is determined to achieve the potential of these

technologies. Such systems need to be tested and demonstrated in a laboratory envi-

ronment, not in simulation, and they require modern technology and innovative design.

STARFISH, LSTAR's laboratory telerobot, is designed to have the electrical power, the

computational resources, the sensing and maneuvering capabilities to automate a wide

variety of tasks including automatic position and attitude sensing and control, and a

range of vehicle control augmentation modes.

The SSL's previous attempts at automatic vehicle control have been limited primarily

by inadequate sensing. LSTAR's approach therefore began with identifying a position

and attitude sensing system that would provide high resolution, frequent updates, and
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reliability. It wasalsoimportant to find a sensingmode that wasapplicableto space,in
order to obtain research results and control techniques that arguably could be transferred

to that environment. Acoustic methods obviously are inapplicable in the vacuum of

space while vision-based techniques, based on the currently advancing technology and

increasing image processing power, hold great promise. The Laboratory is therefore

xteveloping passive-vision sensing systems that will be used in the coming year to obtain

real-time motion control of the vehicle, for use in both stationkeeping control (to support

telemanipulation using a vehicle-mounted manipulator arm currently being designed)

and automatic point-to-point maneuvering.

STARFISH is also expressly designed with the power and computing resources to sup-

port multi-arm telemanipulator systems to be attached to the vehicle's large front panel.

It will be interfaced to the vehicles multi-processor computer system which is equipped

to support three high-performance microprocessor systems enjoying high-speed commu-

nication with one another and with the teleoperator control station. These resources

will support high-quality teleoperation research using manipulator systems currently in

development. Although the processors being used are IBM-PC compatible units (which

permits inexpensive purchase of excellent processing power), the IBP PC operating sys-

tem has been discarded inf favor of QNX, a real-time, multiprocessor, multitasking op-

erating system sold by Quantum Software of Canada. This operating system has made

it extremely easy to configure a powerful, flexible computer system with very high-speed

(3Mb/sec) interprocessor communication. The vehicle itself has provision for three par-

allel computer processors, so that it may ultimately perform programmed tasks under

vision-based control, with all processing performed on-board and with no control-station

connection at all.

LSTAR is uniquely positioned to perform advanced, ambitious research in remote-

vehicle teleoperation, maneuvering, and telemanipulation. The Laboratory is committed

to advanced teleoperation research, and has demonstrated the technical abilities neces-

sary for developing and operating advanced neutral-buoyancy and virtual-environment

simulation systems. With a closely directed focus on the human interface, and on control

augmentation systems to aid the human operator, the Laboratory aims at achieving the

greatest possible productivity for remote vehicles in the weightless environment, using

techniques directly transferable to space.
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